Alexander Brauckmann
Software Engineer at Google, PhD in Computer Science

Education

University of Edinburgh
PhD in Computer Science
Thesis: Tensor Program Optimization through Program Synthesis
Feb 2022 – Oct 2025
Technische Universität Dresden
Diplom (MSc) in Computer Science
Most Outstanding Thesis Award 🏆
Mar 2020

Work Experience

Google
Software Engineer
Nov 2025 – current
Meta
Research Scientist Intern
Dec 2024 – Apr 2025
AMD
Deep Learning Compiler Intern
Jun 2023 – Sep 2023

Software

Tensorize
Program synthesis based tensor compiler, achieving avg. 4.1x speedup by lifting programs to PyTorch, JAX and StableHLO. Uses novel top-down program synthesis algorithm that scales linearly on average. Code
MLIR Synth
MLIR program synthesizer, discovers equivalent programs in high-level MLIR dialects, like LinAlg and StableHLO. Code
PolyGym
Exploring valid loop transformations in polyhedral model with reinforcement learning, finding schedules with avg. 1.83x speedup over Polly/ISL. Code

Publications

STENSO: Tensor Program Superoptimization through Cost-Guided Symbolic Program Synthesis
A. Brauckmann, A. Chaube, J. W. de Souza Magalhães, E. Polgreen, M. O'Boyle
Paper, Code (to appear)
CGO '26
Accelerating Sparse Algebra with Program Synthesis
J. W. de Souza Magalhães, S. Hashemian, A. Brauckmann, J. Woodruff, E. Polgreen, M. O'Boyle
Paper, Code (to appear)
CC '26
Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching and Solving
A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, M. O'Boyle
Distinguished Paper Award 🏆
Paper, Slides, Code
CGO '25
Guided Tensor Lifting
Y. Li, J. W. de Souza Magalhães, A. Brauckmann, M. O'Boyle, E. Polgreen
Paper, Code
PLDI '25
DFA-Net: A Compiler-Specific Neural Architecture for Robust Generalization in Data Flow Analyses
A. Brauckmann, A. Faustino da Silva, G. Synnaeve, M. O'Boyle, J. Castrillon, H. Leather
Paper, Code
CC '25
Guess, Measure & Edit: Using Lowering to Lift Tensor Code
J. W. de Souza Magalhães, J. Woodruff, J. Armengol-Estapé, A. Brauckmann, L. Jaulmes, E. Polgreen, M. O'Boyle
Paper, Code
PACT '25
MLIRSynth: Automatic, Retargetable Program Raising in Multi-Level IR using Program Synthesis
A. Brauckmann, E. Polgreen, T. Grosser, M. O'Boyle
Paper, Slides, Code
PACT '23
Rewriting History: Repurposing Domain-Specific CGRAs
J. Woodruff, T. Koehler, A. Brauckmann, Chris Cummins, Sam Ainsworth, M. O'Boyle
Paper, Code
arXiv '23
ExeBench: an ML-scale dataset of executable C functions
J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J. W. de Souza Magalhães, M. O'Boyle
Paper, Code
MAPS '22
Polygym: Polyhedral Optimizations as an Environment for Reinforcement Learning
A. Brauckmann, A. Goens, J. Castrillon
Paper, Code
PACT '21
Compiler-based Graph Representations for Deep Learning Models of Code
A. Brauckmann, A. Goens, S. Ertel, J. Castrillon
Paper, Code
CC '20
ComPy-Learn: A Toolbox for Exploring Machine Learning Representations for Compilers
A. Brauckmann, A. Goens, J. Castrillon
Paper, Code
FDL '20
A Case Study on Machine Learning for Synthesizing Benchmarks
A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather, J. Castrillon
Paper
MAPS '19

Skills

Programming C, C++, Python
Frameworks JAX, MLIR, PyTorch
Machine Learning Transformer Models, Graph Neural Network Models, Model Optimization
Other Linux, Git, Scrum, Table Tennis