Alexander Brauckmann
My work intersects compilers, machine learning, and program synthesis aiming to optimize tensor programs.

Education

University of Edinburgh
PhD in Computer Science
Thesis: Tensor Program Optimization through Program Synthesis
Feb 2022 – Oct 2025
Technische Universität Dresden
Diplom (MSc) in Computer Science
Most Outstanding Thesis Award 🏆
Mar 2020

Work Experience

Google
Software Engineer
Nov 2025 – current
Meta
Research Scientist Intern
Dec 2024 – Apr 2025
AMD
Deep Learning Compiler Intern
Jun 2023 – Sep 2023

Software

Tensorize
Program synthesis based tensor compiler, achieving avg. 4.1x speedup by lifting programs to PyTorch, JAX and StableHLO. Uses novel top-down program synthesis algorithm that scales linearly on average. Code
MLIR Synth
MLIR program synthesizer, discovers equivalent programs in high-level MLIR dialects, like LinAlg and StableHLO. Code
PolyGym
Exploring valid loop transformations in polyhedral model with reinforcement learning, finding schedules with avg. 1.83x speedup over Polly/ISL. Code

Publications

STENSO: Tensor Program Superoptimization through Cost-Guided Symbolic Program Synthesis
A. Brauckmann, A. Chaube, J. W. de Souza Magalhães, E. Polgreen, M. O'Boyle
Paper, Code
CGO '26
Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching and Solving
A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, M. O'Boyle
Distinguished Paper Award 🏆
Paper, Slides, Code
CGO '25
Guided Tensor Lifting
Y. Li, J. W. de Souza Magalhães, A. Brauckmann, M. O'Boyle, E. Polgreen
Paper, Code
PLDI '25
DFA-Net: A Compiler-Specific Neural Architecture for Robust Generalization in Data Flow Analyses
A. Brauckmann, A. Faustino da Silva, G. Synnaeve, M. O'Boyle, J. Castrillon, H. Leather
Paper, Code
CC '25
Guess, Measure & Edit: Using Lowering to Lift Tensor Code
J. W. de Souza Magalhães, J. Woodruff, J. Armengol-Estapé, A. Brauckmann, L. Jaulmes, E. Polgreen, M. O'Boyle
Paper, Code
PACT '25
MLIRSynth: Automatic, Retargetable Program Raising in Multi-Level IR using Program Synthesis
A. Brauckmann, E. Polgreen, T. Grosser, M. O'Boyle
Paper, Slides, Code
PACT '23
Rewriting History: Repurposing Domain-Specific CGRAs
J. Woodruff, T. Koehler, A. Brauckmann, Chris Cummins, Sam Ainsworth, M. O'Boyle
Paper, Code
arXiv '23
ExeBench: an ML-scale dataset of executable C functions
J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J. W. de Souza Magalhães, M. O'Boyle
Paper, Code
MAPS '22
Polygym: Polyhedral Optimizations as an Environment for Reinforcement Learning
A. Brauckmann, A. Goens, J. Castrillon
Paper, Code
PACT '21
Compiler-based Graph Representations for Deep Learning Models of Code
A. Brauckmann, A. Goens, S. Ertel, J. Castrillon
Paper, Code
CC '20
ComPy-Learn: A Toolbox for Exploring Machine Learning Representations for Compilers
A. Brauckmann, A. Goens, J. Castrillon
Paper, Code
FDL '20
A Case Study on Machine Learning for Synthesizing Benchmarks
A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather, J. Castrillon
Paper
MAPS '19

Skills

Programming C, C++, Python
Frameworks JAX, MLIR, PyTorch
Machine Learning Transformer Models, Graph Neural Network Models, Model Optimization
Other Linux, Git, Scrum, Table Tennis