Education
|
University of Edinburgh PhD in Computer Science Thesis: Tensor Program Optimization through Program Synthesis |
Feb 2022 – Oct 2025 |
|
Technische Universität Dresden Diplom (MSc) in Computer Science Most Outstanding Thesis Award 🏆 |
Mar 2020 |
Work Experience
|
Google Software Engineer |
Nov 2025 – current |
|
Meta Research Scientist Intern |
Dec 2024 – Apr 2025 |
|
AMD Deep Learning Compiler Intern |
Jun 2023 – Sep 2023 |
Software
|
Tensorize Program synthesis based tensor compiler, achieving avg. 4.1x speedup by lifting programs to PyTorch, JAX and StableHLO. Uses novel top-down program synthesis algorithm that scales linearly on average. Code |
|
MLIR Synth MLIR program synthesizer, discovers equivalent programs in high-level MLIR dialects, like LinAlg and StableHLO. Code |
|
PolyGym Exploring valid loop transformations in polyhedral model with reinforcement learning, finding schedules with avg. 1.83x speedup over Polly/ISL. Code |
Publications
|
STENSO: Tensor Program Superoptimization through Cost-Guided Symbolic Program Synthesis A. Brauckmann, A. Chaube, J. W. de Souza Magalhães, E. Polgreen, M. O'Boyle Paper, Code |
CGO '26 |
|
Tensorize: Fast Synthesis of Tensor Programs from Legacy Code using Symbolic Tracing, Sketching and
Solving A. Brauckmann, L. Jaulmes, J. W. de Souza Magalhães, E. Polgreen, M. O'Boyle Distinguished Paper Award 🏆 Paper, Slides, Code |
CGO '25 |
|
Guided Tensor Lifting Y. Li, J. W. de Souza Magalhães, A. Brauckmann, M. O'Boyle, E. Polgreen Paper, Code |
PLDI '25 |
|
DFA-Net: A Compiler-Specific Neural Architecture for Robust Generalization in Data Flow Analyses A. Brauckmann, A. Faustino da Silva, G. Synnaeve, M. O'Boyle, J. Castrillon, H. Leather Paper, Code |
CC '25 |
|
Guess, Measure & Edit: Using Lowering to Lift Tensor Code J. W. de Souza Magalhães, J. Woodruff, J. Armengol-Estapé, A. Brauckmann, L. Jaulmes, E. Polgreen, M. O'Boyle Paper, Code |
PACT '25 |
|
MLIRSynth: Automatic, Retargetable Program Raising in Multi-Level IR using Program Synthesis A. Brauckmann, E. Polgreen, T. Grosser, M. O'Boyle Paper, Slides, Code |
PACT '23 |
|
Rewriting History: Repurposing Domain-Specific CGRAs J. Woodruff, T. Koehler, A. Brauckmann, Chris Cummins, Sam Ainsworth, M. O'Boyle Paper, Code |
arXiv '23 |
|
ExeBench: an ML-scale dataset of executable C functions J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J. W. de Souza Magalhães, M. O'Boyle Paper, Code |
MAPS '22 |
|
Polygym: Polyhedral Optimizations as an Environment for Reinforcement Learning A. Brauckmann, A. Goens, J. Castrillon Paper, Code |
PACT '21 |
|
Compiler-based Graph Representations for Deep Learning Models of Code A. Brauckmann, A. Goens, S. Ertel, J. Castrillon Paper, Code |
CC '20 |
|
ComPy-Learn: A Toolbox for Exploring Machine Learning Representations for Compilers A. Brauckmann, A. Goens, J. Castrillon Paper, Code |
FDL '20 |
|
A Case Study on Machine Learning for Synthesizing Benchmarks A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather, J. Castrillon Paper |
MAPS '19 |
Skills
| Programming | C, C++, Python |
|---|---|
| Frameworks | JAX, MLIR, PyTorch |
| Machine Learning | Transformer Models, Graph Neural Network Models, Model Optimization |
| Other | Linux, Git, Scrum, Table Tennis |
